
LLNL-TR-681025

Parallel Solver for H(div)
Problems Using Hybridization
and AMG

C. S. Lee, P. S. Vassilevski

January 19, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Parallel solver for H(div) problems using hybridization and

AMG‡

Chak S. Lee∗ and Panayot S. Vassilevski†

January 15, 2016

Abstract

In this paper, a scalable parallel solver is proposed for H(div) problems discretized by
arbitrary order finite elements on general unstructured meshes. The solver is based on hy-
bridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the
hybridization solver does not require discrete curl and gradient operators as additional input
from the user. Instead, only some element information is needed in the construction of the
solver. The hybridization results in a H1-equivalent symmetric positive definite system, which
is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling
of the method are examined through several numerical tests. Our numerical results show that
the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for
H(div) problems. In fact, it outperforms ADS for higher order elements.

1 Introduction

This paper is concerned with the H(div) bilinear form acting on vector functions u, v:

a(u,v) =
∫

Ω

α∇ · u∇ · v + β u · v dx. (1)

Here α, β ∈ L∞(Ω) are some positive heterogeneous coefficients, and Ω is a simply-connected
polygonal domain in Rd, d = 2, 3. Discrete problems associated with a(·, ·) arise in many applications,
such as first order least squares formulation of second order elliptic problems [4], preconditioning
of mixed finite element methods [3], Reissner-Mindlin plates [2] and the Brinkman equations [13].
Let A be the linear system obtained from discretization of a(·, ·) by some H(div)-conforming finite
element of arbitrary order on a general unstructured mesh. Our goal is to design a scalable parallel
solver for A.

It is well known that finding efficient iterative solvers for A is not trivial because of the “near-null
space” of A. The currently available scalable parallel solvers include the auxiliary space divergence
solver (ADS) [12] in the hypre library and PCBDDC [14] in the PETSc library. The former relies
on the regular HX-decomposition for H(div) functions proposed in [10]. The setup of ADS is quite
involved and require additional input from the user, namely, some discrete gradient and discrete
curl operators. On the other hand, PCBDDC is based on the Balancing Domain Decomposition by
Constraint algorithm [8]. Its construction requires that the local discrete systems are assembled at

∗Department of Mathematics, Texas A&M University, cslee@math.tamu.edu
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liver-

more, CA 94551, U.S.A., panayot@llnl.gov
‡This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

1

subdomain level. To accommodate high contrast and jumps in the coefficients, the primal space in
PCBDDC is adaptively enriched by solving some generalized eigenvalue problems.

In this paper, we propose an alternative way to solve systems with A. Our approach is based
on traditional hybridization technique used in the mixed finite element method ([3]), thus reducing
the problem to a smaller problem for the respective Lagrange multipliers that are involved in the
hybridization. The reduced problem is symmetric positive definite, and as is well-known, is H1-
equivalent. Thus, in principle, one may apply any scalable AMG solver that is suitable for H1

problems. Unlike ADS, the hybridization approach does not require additional information from the
user. Instead, it requires that the original problem is given in unassembled element-based form.

One main issue that has to be addressed is the choice of the basis of the Lagrange multiplier space.
In general, the reduced problem contains the constant function in its near null-space. However, if the
basis for the Lagrange multipliers is not properly scaled (i.e., does not provide partition of unity), the
coefficient vector of the constant functions is not a constant multiple of the vector of ones. The latter
is a main assumption in the design of AMG for H1-equivalent problems. We resolve this problem
in an algebraic way by constructing a diagonal matrix which we use to rescale the reduced system
such that the constant vector is the near-null space of the rescaled matrix, so that the respective
AMG is correctly designed.

The proposed hybridization with diagonal rescaling is implemented in a parallel code and its
scalability is tested in comparison with the state-of-the-art ADS solver. The results demonstrate
that the new solver provides a competitive alternative to ADS; it outperforms ADS very clearly for
higher order elements.

The rest of the paper is organized as follows. In section 2, we give a detailed description of the
hybridization technique. The properties of the hybridized system are discussed in section 3. After
that, we present in section 4 several challenging numerical examples to illustrate the performance of
the method comparing it with ADS. Lastly, we give some concluding remarks in section 5.

2 Hybridization

We consider the variational problem associated with the bilinear form (1): find u ∈H0(div;Ω) such
that

a(u,v) = (f ,v), ∀ v ∈H0(div; Ω). (2)

Here, f is a given function in
(
L2(Ω)

)d and (·, ·) is the usual L2 inner product in Ω. Our following
discussion is based on discretization of the variational problem (2) by Raviart-Thomas elements of
arbitrary order. We note that other H(div)-conforming finite elements can also be considered. Let
Th be a general unstructured mesh on Ω. The space of Raviart-Thomas elements of order k ≥ 0 on
Th will be denoted by RTk. For instance, if Th is a simplicial mesh, then RTk is defined to be

RTk =
{
vh ∈H0(div; Ω)

∣∣∣ vh|τ ∈ (Pk(τ)
)d + xPk(τ) ∀τ ∈ Th

}
,

where Pk(τ) denotes the set of polynomials of degree at most k on τ . For definitions of RTk on
rectangular/cubic meshes, see for example [3]. Discretization of (2) by RTk elements results in a
linear system of equations

Au = f. (3)

We are going to formulate an equivalent problem such that the modified problem can be solved
more efficiently. We note that RTk basis functions are either associated with degrees of freedom
(dofs) in the interior of elements, on boundary faces, or interior faces of a conforming finite element
mesh. Those associated with dofs in the interior of elements or on boundary faces are supported in
only one element, while those associated with dofs on interior faces are supported in two elements.
In hybridization, the RTk basis functions that are associated with dofs on interior faces are split

2

into two pieces, each supported in one and only one element. In practice, the splitting can be done
by making use of the element-to-dofs relation table to identify the shared dofs between any pair of
neighboring elements. This relation table can be constructed during the discretization. The space of
Raviart-Thomas element after the splitting will be denoted by R̂T k. If we discretize a(·, ·) with the
basis functions in R̂T k, the resulting system will have a block diagonal matrix Â. Next, we need to
enforce the continuity of the split basis functions in some way such that the solution of the modified
system coincides with the original problem. Suppose a RTk basis function φ is split into φ̂1 and
φ̂2. The simplest way is to use Lagrange multiplier space to make the coefficient vectors of the test
functions from both sides of an interior interface to be the same. If we set such constraints for all
the split basis functions, we obtain a constraint matrix C.

Remark 2.1 There are other ways to enforce continuity of R̂T k. For example, when constructing
the constraint matrix C, one can also use the normal traces λ of the original RTk basis functions as
Lagrange multipliers, see [6].

The modified problem after introducing the Lagrange multipliers takes the saddle–point form[
Â CT

C 0

] [
û
λ

]
=
[
f̂
0

]
. (4)

Here, û is the coefficient vector of ûh. The saddle point problem (4) can be reduced

Sλ = g, (5)

where S = CÂ−1CT and g = CÂ−1f̂ . The Schur complement S and the new right hand side g
can be explicitly formed very efficiently because Â is block diagonal. In fact, the inversion of Â is
embarrassingly parallel. Here, each local block of Â is invertible, so Â−1 is well-defined. We will
show in the next section that S is actually a s.p.d. system of the Lagrange multipliers, and that it
can be solved efficiently by existing parallel linear solvers. After solving for λ, û can be computed
by back substitution û = Â−1(f̂−CTλ). Noticing that the back substitution involves only an action
of Â−1 (already available in the computation of S) and some matrix-vector multiplications, which
are inexpensive (local) and scalable computations.

3 Discussion

The hybridization approach described in the previous section can be summarized as follows

1. Split the RTk basis to obtain Â and f̂ .

2. Compute Â−1 and form S = CÂ−1CT and g = CÂ−1f̂ .

3. Solve the system Sλ = g.

4. Recover û by back substitution.

As explained in section 2, step 2 and 4 are scalable (inexpensive local) computations. In contrast,
step 3 involves the main computational cost. Thus, it is important that we can solve S efficiently. In
this section, we describe some properties of S. First, we show that S is related to some hybridized
mixed discretization of the second order differential operator −∇ · (β−1∇) + α−1I (acting on scalar
functions). We note that the differential problem associated with (2) is

−∇(α∇ · u) + βu = f (6)

3

with homogeneous Dirichlet boundary condition u · n = 0. The latter operator acts on vector-
functions. We now make the following connection between these two operators. If we introduce an
additional variable p = α∇ · u, then (6) becomes the following first order system (for u and p)

βu−∇p = f ,

∇ · u− α−1p = 0.
(7)

It is noteworthy to note that the structure of (7) is the same as the mixed formulation of the
differential operator −∇ · (β−1∇) + α−1I. So we can apply a hybridized mixed discretization [6, 7]
for −∇ · (β−1∇) +α−1I to discretize (7). To apply the the hybridized mixed discretization, we note
that the weak form of (7) is to find (u, p) ∈H0(div;Ω)× L2(Ω) such that

(βu,v) + (p,∇ · v) = (f ,v) ∀ v ∈H0(div; Ω)

(∇ · u, q)− (α−1p, q) = 0 ∀ q ∈ L2(Ω).
(8)

Let W k
h ⊂ L2(Ω) be a space of piecewise polynomials such that RTk and W k

h form a stable pair for
the mixed discretization of (8). For instance, for simplicial meshes, we can take

W k
h =

{
q ∈ L2(Ω)

∣∣∣ q|τ ∈ Pk(τ) ∀τ ∈ Th
}
.

If (8) is discretized by the pair R̂T k-W k
h and the continuity of R̂T k is enforced by the constraint

matrix C as described in section 2, we get a 3 by 3 block system of equations of the formM̂ B̂T CT

B̂ −W 0
C 0 0

ûp
λ

 =

f̂0
0

 . (9)

As M̂ and W are weighted L2 mass matrices of the spaces R̂T k and W k
h respectively, they are

invertible. Hence, the 2 by 2 block matrix

[
M̂ B̂T

B̂ −W

]
is invertible, and (9) can be reduced to

[
C 0

] [M̂ B̂T

B̂ −W

]−1 [
CT

0

]
λ =

[
C 0

] [M̂ B̂T

B̂ −W

]−1 [
f̂
0

]
. (10)

Since the (1, 1) block of

[
M̂ B̂T

B̂ −W

]−1

can be written as (M̂+B̂TW−1B̂)−1 and Â = M̂+B̂TW−1B̂,

the reduced problem (10) is in fact identical to (5). Therefore, the Schur complement S in (5) can be
characterized by the hybridized mixed discretization for the differential operator −∇·(β−1∇)+α−1I.

Remark 3.1 Actually the hybridized mixed discretization for −∇ · (β−1∇) + α−1I in [6, 7] gives
rise to the reduced system S̃ for the Lagrange multiplier λ where

S̃ = C
(
M̂−1 − M̂−1B̂T

(
B̂M̂−1B̂T +W

)−1
B̂M̂−1

)
CT .

However, since W is invertible, an application of the Sherman-Morrison-Woodbury formula implies
that S̃ = S.

In [7], the authors proved that S is spectrally equivalent to the norm |||·||| on the space of Lagrange
multipliers defined as

|||λ|||2 =
∑
τ∈Th

1
|∂τ |
‖λ−mτ (λ)‖2∂τ

4

where mτ (λ) = 1
|∂τ |

∫
∂τ
λ ds. More precisely, there are constants C1 and C2, depending only on the

approximation order k, the coefficients α, β of the operator, and the shape regularity of Th such that

C1|||λ|||2 ≤ λTSλ ≤ C2|||λ|||2 ∀ λ.

Consequently, S is symmetric positive definite. Moreover, this shows that the near-null space of S
is spanned by the constant functions, which is the main assumption to successfully apply solvers of
AMG type. When solving with S, we opt for the parallel algebraic multigrid solver BoomerAMG
from the hypre library [9].

The fact that the constant functions are in the near-null space of S is not sufficient to guarantee
the efficiency of BoomerAMG. One of the factors affecting the success of BoomerAMG is that the
constant coefficient vector 1 should be in the near-null space of S (as a matrix). However, this is
not always the case. Indeed, depending on the choice of basis for the Lagrange multipliers space,
the coefficient vector of a constant function is not necessarily a constant vector. To resolve this
issue, we chose to rescale S by a diagonal matrix D such that the constant vector is now in the
near-null space of DTSD. To achieve this, we solve the homogeneous problem Sd = 0 by applying a
few smoothing steps to a random initial guess. In our numerical experiments to be presented in the
next section, we use 5 conjugate gradient (CG) iterations preconditioned by the Jacobi smoother
in the computation of d, which is fairly inexpensive. Once d is computed, we set Dii = di (the ith
entry of d). Noticing that D1 = d, so 1 is in the near-null space of DTSD. We can then apply CG
preconditioned by BoomerAMG constructed from DTSD to efficiently solve the system

(DTSD)λD = DT g.

Lastly, the original Lagrange multiplier λ is recovered simply by setting λ = DλD.
Another useful feature of S is that its size is less than or equal to the size of the original matrix

A. This is because there is a one-to-one correspondence between Lagrange multipliers and Raviart-
Thomas basis functions associated with interior faces. For higher order Raviart-Thomas elements,
a portion of the basis functions are associated with interior of elements. These basis functions are
supported in one element only, so they do not need Lagrange multipliers to enforce their continuity.
Hence, for higher order approximations, the size of S is considerably smaller than the size of A. As
a result, methods for solving with S is likely to be more efficient and faster than solving with A
(using the state-of-the-art solvers such as ADS) which is confirmed by our experiments.

4 Numerical Examples

In this section, we present some numerical results regarding the performance of our hybridization
AMG solver. All the experiments are performed on the cluster Sierra at the Lawrence Livermore
National Laboratory. Sierra has a total of 1944 nodes (Intel Xeon EP X5660 clocked at 2.80 GHz),
which are connected by InfiniBand QDR. Each node has 12 cores and equipped with 24 GB of
memory.

In the solution process, the hybridized system with S is rescaled by the diagonal matrix D as
described in the previous section. The rescaled system DTSD is then solved by the CG method
preconditioned with BoomerAMG (constructed from DTSD) from the hypre library. As one of our
goals is to compare the hybridization AMG solver with ADS, we present also the performance of ADS
in all the examples. In order to have fair comparisons, the time to solution for the hybridization AMG
solver includes the formation time of the Schur complement S, the computation time to construct
the rescaling matrix D, the solve time for the problem with the modified matrix DTSD by CG
preconditioned by BoomerAMG, and the recovery time of the original unknown u. The time to
solution for ADS is simply the solve time for the original problem with A by the CG preconditioned
by ADS. For the tables in the present section, # proc refers to the number of processors, while #
iter refers to the number of PCG iterations.

5

4.1 Weak Scaling

We first test the weak scaling of the hybridization AMG solver. The problem setting is as follows. We
will solve problem (3) obtained by RTk discretization on uniform tetrahedral mesh in 3D. Starting
from some initial tetrahedral mesh, we refine the mesh uniformly. The problem size will be increased
by about 8 times after one such refinement. At the same time, the number of processors for solving
the refined problem is increased 8 times so that the problem size per processor is kept roughly the
same. Both the lowest order Raviart-Thomas elements RT0 and a higher order elements, RT2, are

Figure 1: Initial mesh for the RT2 weak scaling test case. Blue region indicates Ωi.

considered. We solve a heterogeneous coefficient problem on the unit cube, i.e. Ω = [0, 1]3. The
boundary conditions are u ·n = 0 on ∂Ω, and the source function f is the constant vector [1, 1, 1]T .
Let Ωi = [1

4 ,
1
2]3 ∪ [1

2 ,
3
4]3. We will consider β being constant 1 throughout the domain, whereas

α =
{

1 in Ω\Ωi
10p in Ωi

and we choose p = -4, 0, or 4. For RT2 test case, we first partition Ω into 8 x 8 x 4 parallelepipeds.
The initial tetrahedral mesh in this case is then obtained by subdividing each parallelepiped into
tetrahedrons, see figure 1. The initial mesh of the RT0 test case is obtained by refining the initial
mesh of the RT2 test case 3 times. The PCG iterations are stopped when the l2 norm of the
residual is reduced by a factor of 1010. The time to solution (in seconds) of both the hybridization
AMG and ADS for the RT0 case are shown in table 1. Additionally, we also report the number of
PCG iterations in the brackets. We see that the number of iterations of the hybridization solver
are very stable against problem size and the heterogeneity of α. The average time to solution of
the hybridization approach is about 2 times faster than that of ADS. The solution time difference
between the two solvers is more significant in the high order discretization case. This is due to the
fact that size of the hybridized system S is much smaller than the size of the original system A.
Indeed, in the case of RT2, the average time to solution of the hybridization approach is about 8
times faster than that of ADS, see Table 2. In figure 2, we plot the solution time of both solvers
where p = 4 in the definition of α. We can see that the hybridization solver has promising weak
scaling up to 1536 processors.

4.2 Strong Scaling

In the second example, we investigate the strong scaling of the hybridization AMG solver. The
problem considered in this section is the crooked pipe problem, see [12] for a detail description of
the problem. The mesh for this problem is depicted in figure 3. The coefficient α and β are piecewise
constants. More precisely, (α, β) = (1.641, 0.2) in the red region, and (α, β) = (0.00188, 2000) in

6

α = {1, 10p}, β ≡ 1 p
proc Problem size -4 0 4

Hybridization-BoomerAMG-CG
3 200,704 0.97 (24) 0.96 (21) 0.93 (21)
24 1,589,248 1.15 (24) 1.15 (23) 1.16 (23)
192 12,648,448 1.45 (27) 1.48 (25) 1.43 (24)

1,536 100,925,440 3.31 (29) 3.03 (28) 3.03 (28)
ADS-CG

3 200,704 2.68 (21) 1.74 (10) 1.79 (11)
24 1,589,248 4.04 (25) 3.53 (13) 3.54 (13)
192 12,648,448 7.10 (27) 5.73 (15) 5.61 (14)

1,536 100,925,440 8.30 (28) 6.28 (15) 6.51 (15)

Table 1: Time to solution in seconds: RT0 on tetrahedral meshes, the corresponding number of PCG
iterations are the reported in the brackets.

α = {1, 10p}, β ≡ 1 p
proc Problem size -4 0 4

Hybridization-BoomerAMG-CG
3 38,400 0.30 (15) 0.31 (16) 0.31 (16)
24 301,056 0.48 (18) 0.50 (21) 0.48 (20)
192 2,383,872 0.75 (28) 0.89 (29) 0.77 (29)

1,536 18,972,672 1.97 (44) 1.95 (47) 2.10 (47)
ADS-CG

3 38,400 4.85 (23) 3.55 (13) 3.80 (14)
24 301,056 7.24 (29) 5.47 (18) 5.73 (20)
192 2,383,872 11.56 (37) 8.89 (25) 9.56 (28)

1,536 18,972,672 24.28 (53) 16.51 (37) 16.37 (39)

Table 2: Time to solution in seconds: RT2 on tetrahedral meshes, the corresponding number of PCG
iterations are the reported in the brackets.

the blue region. The difficulties of this problem are the large jumps of coefficients and the highly
stretched elements in the mesh (see figure 3). For this test, the problem discretized by RT1. The
size of A is 2,805,520, and we solve the problem using 4, 8, 16 ,32 and 64 processors. The PCG
iteration is stopped when the l2 norm of the residual is reduced by a factor of 1014. The number of
PCG iterations and time to solution are reported in Table 3, and we plot the speedup in figure 4.
When measuring the speedup, solution time are corrected by the number of iterations.

Both solvers exhibit good strong scaling. We note that in this example, the solution time of the
hybridization AMG solver is much smaller than the ADS solver. The average solve time of the hy-
bridization AMG solver is about 10 times smaller than that of ADS. In particular, the hybridization
AMG solver with 4 processors is still 2 times faster than ADS with 64 processors. The difference in
the computation time for this example is highly noticeable.

Lastly, we report the time spent on different components of the hybridization approach in Table
4. We observe that except solving with S (i.e. setup and PCG solve), the other components scale
fairly well. Also, as we point out in section 3, solving with S is the most time consuming part of
the hybridization AMG code. We remark that during the formation of S, we stored the inverses of
local blocks of Â. So when we recover u by back substitution, only matrix multiplication is needed.
Hence, the recovery of u is extremely cheap and scalable.

7

(a) RT0

(b) RT2

Figure 2: Weak scaling comparisons between hybridization (red dotted line) and ADS (blue solid
line)

Figure 3: The mesh for the Crooked Pipe problem (left). A dense layer of highly stretched elements
(right) has been added to the neighborhood of the material interface in the exterior subdomain in
order to resolve the physical diffusion.

5 Concluding Remarks

In this paper, we present a parallel solver for H(div) problems on general unstructured mesh using
hybridization and AMG. A symmetric positive definite system for the Lagrange multipliers is first

8

Hybridization-BoomerAMG-CG ADS-CG
proc # iter time to solution # iter time to solution

4 25 23.46 32 508.66
8 31 14.21 32 251.37
16 28 6.83 33 130.26
32 28 3.98 34 73.47
64 31 2.92 34 54.58

Table 3: Strong scaling test, original problem size: 2,805,520.

proc formation of S computation of D setup PCG solve recovery of u
4 7.55 0.22 3.87 11.72 0.092
8 3.95 0.11 2.29 7.81 0.046
16 1.84 0.057 1.4 3.52 0.022
32 1.11 0.034 0.83 2.01 0.012
64 0.68 0.027 0.52 1.7 0.006

Table 4: Timing of each component of the new solver.

Figure 4: Strong scaling comparison between hybridization (red dotted line) and ADS (blue solid
line). Black dotted line indicates perfect scaling

formed by hybridization. Motivated by its relation to the hybridized mixed discretization for sec-
ond order scalar elliptic problem, we solve this global system by AMG. A rescaling technique was
implemented so that the rescaled system has the right scaling suitable for BoomerAMG to work
appropriately. We perform several numerical tests on both structured and unstructured meshes in
3D. Our results show that the proposed solver has good weak and strong scalability, and that it
is an attractive alternative for solving H(div) problems, especially for high order discretizations.
Previously proposed solvers for the problem focus on the treatment of the kernel of the discrete
divergence operator. In particular, some discrete curl and gradient operators need to be provided
by the user in the construction. On the contrary, the solver proposed in the current paper does
not require such additional input from the user. It does require the stiffness matrix to be given
in unassembled element-matrix form, which is available during discretization. Although in this

9

paper we focus on finite element problems discretized by Raviart-Thomas elements, the proposed
approach can be applied to other H(div) conforming discretizations like Brezzi-Douglas-Marini el-
ements, Arnold-Boffi-Falk elements [1], or numerically upscaled problems [5, 11].

References

[1] D. N. Arnold, D. Boffi, and R. S. Falk, Quadrilateral H(div) finite elements, SIAM
Journal on Numerical Analysis, 42 (2005), pp. 2429–2451.

[2] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning discrete approximations of
the Reissner–Mindlin plate model, RAIRO Modél. Math. Anal. Numér., 31 (1997), pp. 517–557.

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag New
York, Inc., New York, NY, USA, 1991.

[4] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system
least squares for second-order partial differential equations: Part I, SIAM Journal on Numerical
Analysis, 31 (1994), pp. 1785–1799.

[5] E. T. Chung, Y. Efendiev, and C. S. Lee, Mixed generalized multiscale finite element
methods and applications, SIAM Multiscale Modeling and Simulation, 13 (2015), pp. 338–366.

[6] B. Cockburn and J. Gopalakrishnan, A characterization of hybridized mixed methods for
second order elliptic problems, SIAM Journal on Numerical Analysis, 42 (2004), pp. 283–301.

[7] B. Cockburn and J. Gopalakrishnan, Error analysis of variable degree mixed methods for
elliptic problems via hybridization, Mathematics of Computation, 74 (2005), p. 16531677.

[8] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimiza-
tion, SIAM Journal on Scientific Computing, 25 (2003), pp. 246–258.

[9] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and
preconditioner, Applied Numerical Mathematics, 41 (2002), pp. 155 – 177.

[10] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,
SIAM Journal on Numerical Analysis, 45 (2007), pp. 2483–2509.

[11] D. Kalchev, C. S. Lee, U. Villa, Y. Efendiev, and P. S. Vassilevski, Upscaling of
mixed finite element discretization problems by the spectral AMGe method, Submitted.

[12] T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space AMG solver for H(div) prob-
lems, SIAM Journal on Scientific Computing, 34 (2012), pp. A3079–A3098.

[13] P. S. Vassilevski and U. Villa, A block-diagonal algebraic multigrid preconditioner for the
Brinkman problem, SIAM Journal on Scientific Computing, 35 (2013), pp. S3–S17.

[14] S. Zampini, PCBDDC: a novel class of robust dual-primal preconditioners in PETSc, submit-
ted.

10

